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Abstract Optical neural networks (ONNs), enabling low latency and high parallel data processing without
electromagnetic interference, have become a viable player for fast and energy-efficient processing and
calculation to meet the increasing demand for hash rate. Photonic memories employing nonvolatile phase-
change materials could achieve zero static power consumption, low thermal cross talk, large-scale, and
high-energy-efficient photonic neural networks. Nevertheless, the switching speed and dynamic energy
consumption of phase-change material-based photonic memories make them inapplicable for in situ training.
Here, by integrating a patch of phase change thin film with a PIN-diode-embedded microring resonator,
a bifunctional photonic memory enabling both 5-bit storage and nanoseconds volatile modulation was
demonstrated. For the first time, a concept is presented for electrically programmable phase-change
material-driven photonic memory integrated with nanosecond modulation to allow fast in situ training and zero
static power consumption data processing in ONNs. ONNs with an optical convolution kernel constructed
by our photonic memory theoretically achieved an accuracy of predictions higher than 95% when tested
by the MNIST handwritten digit database. This provides a feasible solution to constructing large-scale
nonvolatile ONNs with high-speed in situ training capability.
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1 Introduction
In recent years, neural networks based on central processing
units (CPUs) have been used in mobile phones for speech
recognition and image classification,1 but they are still in their
infancy in more sophisticated and expansive application fields
where massive amounts of data should be processed in real time,

such as autonomous driving2 and computer vision.3 Optical
neural networks (ONNs) based on photonic integrated circuits
(PICs)4–9 have the potential to meet this demand as a conse-
quence of their low latency, high parallel (e.g., wavelength/
spatial division multiplexing), and strong anti-electromagnetic
interference capability of PICs, as well as the low cost and high
yield provided by a complementary metal-oxide-semiconductor
(CMOS) fabrication process.10–13 Recently, a series of ONNs
have been demonstrated for artificial intelligence, including
vowel recognition,14 perceptron,15,16 pattern recognition,17 and
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image classification.18,19 However, for real-world applications,
more efforts are needed to improve the energy efficiency, scal-
ability, and algorithm accuracy of ONNs.

In on-chip ONNs, weights are determined by basic units of
PICs altering their optical phase20 or intensity.21 These basic
units commonly employ the thermo-optic (TO) effect, free-
carrier dispersion effect, or nano-opto-electromechanical sys-
tems,22,23 suffering from severe heat accumulation, high static
power consumption or/and large footprint, which constrains
the scalability of programmable photonic networks. On-chip
integrated photonic memories, which can retain specific optical
states after training (referring to all types of training), are antici-
pated to be embedded in programmable PICs to reduce or
even eliminate static power consumption. Chalcogenide phase-
change materials (PCMs) are promising candidates for zero
static power-consumption photonic memories due to their
reversible amorphous-crystalline phase transition,24–26 and ex-
ceptional long-term, self-sustaining capability.27 Moreover, the
high optical contrast (Δn) of PCMs between their covalent-
bonded amorphous and resonant-bonded crystalline states makes
ultracompact photonic memories achievable. Compared with
photonic memories based on charge trapping,28 and ferroelectric
domain configuration,29 or programmable nodes of PICs based
on latched micromechanical systems,30 photonic memories and
nonvolatile PICs based on PCMs have the advantages of high
stability, low loss, and especially small footprint. In the past
decade, PCM-based integrated photonic memory (PM) has been
demonstrated by adopting GeSbTe,31–36 GeSbSeTe,37 SbS,38

SbSe,39,40 etc. On-chip light-induced reconfigurable GST-based
PM and its application in an ONN have been demonstrated.41

However, for low-loss PCMs such as SbSe, optically induced
reprogramming is inapplicable for scalable networks due to the
negligible absorption loss at the telecom C-band. Electrothermal
control of PCM not only addresses this issue but also has the
potential for constructing large-scale nonvolatile programmable
PICs. This makes electrically programmable PCM-based PICs
much coveted in the future of high-efficiency and large-scale
ONNs.42

On the other hand, in situ training (referring to training the
ONN directly in the optical domain) is a potent remedy for
enhancing the accuracy of algorithm execution in integrated
ONNs,43–45 which can not only improve the training speed but
also reduce the influence of manufacturing errors and electrical/
thermal cross talk.46 However, although PCM-integrated photonic
memories can make PICs highly energy-efficient after training,
their long switching time and high switching energy consump-
tion make them unsuitable for in situ training of ONNs, which
hampers more accurate algorithm operation. Hence, an energy-
efficient PM that could achieve high-speed volatile modulation
at the same time is not only necessary but also pivotal, especially
for in situ training of sporadic reprogramming ONNs exempli-
fied by convolutional neural networks (CNNs).

Wavelength division multiplexing (WDM)-based computing
is a potential arena for implementing optical CNNs.47 Combined
with the nonvolatile modulation of PCM, zero-static power
consumption optical CNNs can be achievable.48 Moreover, the
combination of WDM and frequency comb makes ONNs with
more complex functionality achievable.49 Increasing the number
of WDM channels can increase the amount of parallel compu-
tation of optical computing. The 2-μm waveband is a promising
candidate for expanding the number of channels thanks to
the ignorable two-photon absorption at the 2-μm waveband of

silicon50 and the higher free-carrier dispersion effect of silicon
at 2 μm.51

To date, to the best of our knowledge, nanosecond in situ
training-compatible multilevel PM has not yet been studied.
Here, we address these challenges by demonstrating an electri-
cally programmable phase-change PM for ONNs. In this work,
by integrating a low-loss PCM Sb2Se3 with a p–i–n (PIN)-diode-
embedded micro-ring resonator (MRR), a 2-μm multilevel PM
with more than 5 bits was demonstrated, and any specific inter-
mediate optical state can be configured from an unknown state by
applying certain electrical pulses. Meanwhile, volatile modula-
tion with a speed of 15.2 MHz was enabled by keeping the
driving voltage of the waveguide-integrated PIN diode under
the threshold for triggering the phase change of the PCM.
Such photonic memories can simultaneously realize in situ train-
ing and data storage in PICs for ONNs. In addition, this work
provides a new paradigm for constructing CMOS-compatible,
electrically programmable, nonvolatile on-chip photonic acceler-
ators with high-speed in situ training capability, which we believe
would contribute to the further development of energy-efficient,
large-scale, high-yield ONNs.

2 Device Design
Figure 1(a) shows a schematic diagram of the PM enabling in
situ training of ONNs. A patch of Sb2Se3 phase-change thin film
with a thickness of 30 nm was covered on a 600 nm-wide
150 nm-etched silicon waveguide, forming a low-loss Sb2Se3∕
silicon hybrid waveguide configuration similar to what we pre-
viously demonstrated in Ref. 52. When the phase transition of
Sb2Se3 occurs, it modifies the refractive index of the PCM patch
and the effective refractive index (neff ) of the hybrid waveguide,
which alters the resonant peak of the microring, thus changing
the optical output of the PM. A 30 nm-thick Al2O3 film was
capped on the top to avoid oxidization of Sb2Se3 during phase
switching. A PIN diode was embedded in the silicon waveguide
to not only support fast volatile modulation but also induce
phase transition of the PCM above the waveguide by resistive
heating.

Figure 1(b) depicts how PCM-integrated photonic memories
operate in on-chip ONNs. Before the in situ training began,
PCM patches of the photonic memories in an ONN were all
initialized to the crystalline state. This was achieved by heating
the PCM up via the PIN diode to a temperature higher than its
crystallization temperature (Tc) and holding for a period of time,
for instance, 1 ms. During in situ training, the PIN diode in each
PM was driven by a relatively low driving voltage, realizing the
free-carrier dispersion effect-based volatile modulating, thus up-
dating the weight in nanoseconds while keeping the temperature
of the PCM below its crystallization temperature (Tc). After
in situ training, the trained weight information from volatile
modulation was written into PCM-integrated memories by
the ohmic heating effect of the PIN diode. To realize multibit
memory, PCM was melted and then rapidly quenched, further
heated to various temperatures between Tc and Tm (melting
temperature) to partially crystallize to a certain optical state.
After weights are written into PM, the on-chip ONN can com-
pute passively, i.e., maintaining the weight info without power
consumption.

The design of the PIN microheater is the key to the PCM-
integrated PM. Since we employed standard concentrations
of ion implantation in a multiproject wafer (MPW) run offered
by the Institute of Microelectronics of the Chinese Academy of
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Sciences (IMCAS), the distance between the Pþþ∕Nþþ heavily
doping area and waveguide core was designed to balance
the insertion loss and heating efficiency. The propagation
loss of our PIN-diode-embedded waveguide is simulated
to be 0.0042 dB∕μm and experimentally measured to be
0.0065 dB∕μm (see Sec. S1 in the Supplementary Material).
Figure 1(a) shows the distribution of the thermal field in the
PM when a 6 V/500 ns voltage pulse is applied. It could be seen
that the PIN diode can effectively heat the PCM up to a certain
temperature and induce a corresponding phase change by apply-
ing specific electrical pulses.

To separately manipulate volatile modulation and nonvolatile
storage, electric pulses needed to be studied. According to our
simulation, the bias current applied for fast volatile modulation
based on the free-carrier dispersion effect should be lower than
5.84 mA to avoid the TO effect (see Sec. S2 in the Supplementary
Material). At this point, the temperature of the whole waveguide
region was simulated to be lower than 355 K, far below the
crystallization temperature of Sb2Se3.

To write data to the PM, the driving voltage and pulse du-
ration are the main parameters that need to be carefully designed
and optimized. The longest pulse duration (or switching speed)
of a PCM-based PM is limited by the crystallization process.
Figure 1(c) shows the crystallization temperature of an Sb2Se3
patch on the PIN diode with applied single pulses of different
voltages and durations. It could be seen that the pulse duration
needed for crystallization could be shortened by appropriately
increasing the driving voltage, considering that the driving volt-
age required for crystallization is relatively low. In contrast, the
highest driving voltage needed for a PCM-based PM depends on
the amorphization process due to higher Tm than Tc, as shown in
Fig. 1(d). However, the voltage of the amorphization pulse
cannot be arbitrarily lowered by prolonging the pulse duration.
On the one hand, the thermal decay rate of the system has to be
larger than the critical cooling rate53 to avoid recrystallization,
yet the thermal decay time of the system is simulated to increase
with the prolonged pulse duration. On the other hand, continu-
ous increasing of the pulse duration with a certain voltage

Fig. 1 Design and operation principle of our PM. (a) Schematic diagram of the PM’s structure,
thermal distribution at a 6 V/500 ns voltage pulse, and optical mode profile at 2025 nm,
respectively. (b) Operation principle of our PM. Simulated temperature variation of Sb2Se3
patch with applied single pulses of different voltages and durations for (c) crystallization and
(d) amorphization.
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amplitude ultimately leads to thermal saturation, and an over-
long pulse duration brings about limited benefits. Hence, the
duration of amorphization pulses is limited to within 2 μs in
our design. It could be seen from Fig. 1(d) that the driving volt-
age could be optimized down to 5 V theoretically. This driving
voltage could be supplied by integrated circuits in standard
CMOS technologies.54

Therefore, this PCM-integrated PM could potentially achieve
a nonvolatile write speed of microseconds and write voltage
lower than 5 V, as well as volatile modulation with nanoseconds
for in situ training for ONNs. Although the optical loss in
volatile phase modulation of a PIN diode is higher than that of
a p–i–p (PIP) or n–i–n (NIN) doping waveguide,55,56 it has
prominent advantages of higher speed for volatile modulation
due to the usage of the free-carrier dispersion effect of silicon
rather than the TO effect of silicon. Moreover, the optical loss
induced during volatile modulation becomes exploitable by
integrating such a design with an MRR. Finally, the PIN
diode microheater can reduce the driving voltage needed for
phase switching of PCM compared to the PIP or NIN doping
profile.31,40

3 Multibit Low-Loss Photonic Memory
We experimentally demonstrated the Sb2Se3-integrated PM in
the form of an all-pass MRR (Sb2Se3 MRR). Figure 2(a) shows
a schematic diagram of the fabrication process. The waveguide
patterning and ion implantation were performed in an MPW run
offered by IMCAS. The doping concentrations of p-type and
n-type were 2.0 × 1020 cm−3 and 5.0 × 1020 cm−3, respectively.
Then, metallic electrodes (5 nm Cr/100 nm Au) and Sb2Se3
patches were fabricated by UV lithography followed by a

lift-off process. Finally, a 30 nm Al2O3 was deposited, and the
metal contact window was opened by etching.

Figure 2(b) shows an optical microscope image of the
fabricated Sb2Se3 MRR with a radius of 40 μm. A 15-μm-long
Sb2Se3 patch was covered on a 20-μm-long PIN diode em-
bedded in the resonator. A home-built integrated photonic mea-
surement setup (see Sec. S3 in the Supplementary Material)
was used to characterize the PM. To eliminate the temperature
perturbation derived from ambient temperature variation, the
temperature of the substrate of the photonic chip is held to
30°C throughout the test via a temperature control system.
Figure 2(c) shows the change of normalized transmittance (T)
spectra of the Sb2Se3 MRR when the phase transition of
Sb2Se3 occurs. When Sb2Se3 was crystallized by a 3.0 V/1 ms
voltage pulse or amorphized by an 8.2 V/500 ns pulse, a reso-
nance peak shift of 0.34 nm and an extinction ratio over 14 dB
were realized.

Here, we systematically characterized the effect of amplitude
and duration of voltage pulses on the multilevel switching re-
sponse of photonic memories. The Sb2Se3 patch was gradually
amorphized and generated 38 levels in the PM by applying an
electric pulse with a duration of 500 ns and voltage amplitudes
not exceeding 8.2 V. The transmission change (ΔT) and storage
levels are shown in Fig. 3(a). Each optical storage level is the
average value of 50 measurements in the same state to avoid test
errors due to systematic noise. The lowest resolution of these
memory states is 0.07 dB. Among them, 28 levels were distin-
guishable after the transmission change is converted to the linear
region, which can be used for info storage for optical comput-
ing. As our simulations confirmed, prolonging the pulse width
can reduce the driving voltage for the melt quenching of Sb2Se3

Fig. 2 Device fabrication and switching performance of our PM. (a) Fabrication flowchart of the
device. (b) Microscope image of an Sb2Se3 MRR PM. The inset shows an SEM image of the
Sb2Se3 (the shaded region) on top of the PIN diode. (c) Normalized transmittance spectra of
the PM after the phase switching between two states of Sb2Se3.
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during amorphization [see Fig. 3(b)]. By employing a pulse
duration of 2 μs, the driving voltage needed for partial amorph-
ization of Sb2Se3 to generate a transmittance change could be
reduced to 5.3 V. The device would be damaged once the pulse
duration of the relatively high-voltage amorphization pulse
exceeded 2 μs; hence, the pulse duration should be kept within
2 μs. The amorphization driving voltage could be reduced to
4.4 V by narrowing the gap between the waveguide and the
metal contact (see Sec. S4 in the Supplementary Material), sug-
gesting good scaling potential with improved energy efficiency.

As for multilevel crystallization, by applying fixed voltage
amplitude at 3 V and various pulse durations of no more than
50 μs, 40 memory states were demonstrated with a resolution
higher than 0.07 dB, as shown in Fig. 3(c). After conversion
to the linear domain, there are still 34 different states (more than
5 bits). Each level was also averaged by 50 measurements.
The standard deviation in Fig. 3(c) confirms that the states are
separable even with noise in the measurement system. The
write speed of the PM could be further improved by increasing
the driving voltage for crystallization, as shown in Fig. 3(d),
consistent with our design.

Hence, a 5-bit PCM-integrated PM was demonstrated, with
a driving voltage lower than 10 V and a switching time within

tens of microseconds. The experimental driving voltage is not as
low as the simulated one, which may result from nonideal ion
implantation and activation in the device fabrication.

4 Volatile Modulation-Compatible Photonic
Memory for ONNs

A photonic neural network with PCM-integrated memory is of
zero static power consumption, but in situ training via continu-
ally and intensively switching the phase of PCM is neither
energy-efficient nor fast enough. Here, we address this issue
by embedding a volatile modulation function into nonvolatile
PM. Figure 4(a) shows the change of normalized transmittance
spectra of the PM during volatile modulation used in the in situ
training process. Note that the Sb2Se3 patch on the PIN diode is
now amorphized. The ripples of the measured spectra resulted
from the Fabry–Perot resonance due to the reflection of the gra-
ting coupler. A peak shift efficiency of 0.15 nm∕V was realized.
Figure 4(b) shows the dynamic response of the PM when a
1.3 V, 1 MHz square-wave signal was applied. The 10%-to-
90% rising time (τrise) and 90%-to-10% falling time (τrise) are
characterized to be 13.4 and 23.0 ns, respectively, correspond-
ing to a 3 dB bandwidth of 15.2 MHz.

Fig. 3 The change in transmittance of the PM under multilevel states. (a) Amorphization (at
2024.59 nm) and (c) crystallization (at 2024.25 nm). The inset shows the enlarged error bar of
two randomly chosen storage levels. Change in the transmittance of the PM with different voltages
and pulse widths for (b) amorphization and (d) crystallization.

Fig. 4 Volatile modulation of an Sb2Se3 MRR. (a) Normalized transmittance spectra with different
forward biases. (b) Dynamic response of the Sb2Se3 MRR.
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Here, we simulated electrically programmable ONNs by
Python exemplified by a 4 × 4 optical convolution kernel (OCK)
constructed by the PM, as shown in Fig. 5(a). Since the
PCM-integrated PM was demonstrated in the form of an MRR,
the convolution operation was implemented through a WDM
scheme. Modulated optical signals with four different wave-
lengths were equally sent to the OCK in four equal channels.
After the optical convolution operation, optical signals were

converted to electrical signals, amplified by the transimpedance
amplifier, and then processed by the CPU. Any intermediate
storage state could be configured from an unknown state by
employing two electrical pulses (one for amorphization and
the other for crystallization), and the measured transmission
change (T) is shown in the inset of Fig. 5(a). Thus, our proposed
OCK is capable of both fast on-chip training and computing
with near-zero power consumption.

Fig. 5 OCK based on the volatile-modulation-compatible PM. (a) Schematic architecture of a 4 × 4
OCK. The inset is the solidifying method of the output value of each basic unit in ONNs after
on-chip training of OCK. (b) Schematic diagram of the on-chip training and writing operation of
the OCK. The accuracy of predictions (c) after the simulated on-chip training of OCK and (d) after
simulated writing into PMs.
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The PM-embedded OCK was theoretically verified by the
MNIST handwritten digit database. Before the on-chip training
of OCK execution, the states of all SbSe patches are initialized
to their crystalline state. After that, the on-chip training of
OCK was implemented by exploiting the volatile modulation
of our PM. Then, the trained weights were written to the
PM by applying a reset (amorphization) pulse followed by
a fractional-crystallization pulse after the on-chip training of
OCK. Figure 5(b) shows a schematic diagram of the evolution
of measured transmittance spectra and kernel value. The trained
and stored MRR arrays have different transmittance spectra,
since the on-chip training of OCK and writing were conducted
through different principles and approaches. Yet the value of
weights after the on-chip training of OCK and writing should
be as close as possible (and ideally the same). The question
naturally arises over whether the discrete storage states of PCM-
based PMs may lead to performance deterioration of the OCK.
To verify this, the accuracy of predictions after the simulation of
the on-chip training of OCK via PIN diodes (>95%) is shown
in Fig. 5(c). After the trained parameters were written into
the PMs, the implementation of the network reached minimal
deviation in accuracy, as shown in Fig. 5(d). Note that the scale
of the MRR array could be easily expanded. Considering there
are M channels for data processing, the OCK could be scaled
up to M × 21 by simply decreasing the radius of the Sb2Se3
MRR to 8 μm in theory (see Sec. S5 in the Supplementary
Material).

The PM-based convolution core benefits both on-chip
training of OCK and low-static power computing. The on-chip
training of OCK based on the volatile-compatible PM provides
a training speed typically 1000 times faster than the commonly
used TO scheme.20 After on-chip training of OCK, the comput-
ing is done passively without static power consumption. With
this scheme, the saved power consumption of an M × 21
OCK isM × 210 mW, compared with the typical TOmodulator
array with 10 mW of each discrete device on average.20,57

Therefore, the ONNs with PM are attractive in sporadic pro-
gramming applications, and the power efficiency would increase
with the scaling up of PICs.

In large-scale ONNs where PMs are expected to be used in
the whole linear network, multibit storage of PMs can play
a significant role. For instance, constructing an ONN (with
a 16 × 4 OCK) from PMs where the in situ training results
showed an averaged prediction accuracy rate of 94.64% iden-
tifying the MNIST data set, PMs need at least 4 bits to achieve
comparable prediction accuracy (averaged accuracy rate >94%),
as shown in Sec. S6 in the Supplementary Material. This in-
dicates that multibit PMs are necessary for high-performance
ONNs, and higher bits are expected for more complicated
applications.

5 Conclusion
In this work, we proposed an electrically programmable
phase-change PM for energy-efficient in situ training ONNs
with CMOS compatibility and scalability. By integrating an
Sb2Se3 phase-change patch onto a PIN diode, we designed
and experimentally validated the PCM-driven 5-bit PM using
an MRR. The PM exhibits a transmittance contrast of
14.63 dB∕13.42 dB, creating 28/34 storage levels during
amorphization/crystallization, and the corresponding pulse volt-
ages (pulse durations) are 7.4 to 8.2 V (0.5 μs)/3 V (10 to
50 μs). Furthermore, theoretically, complete amorphization of

Sb2Se3 can be induced by a 500-ns electrical pulse with an
actuation voltage as low as 3.3 V, which can be provided by
an integrated circuit with standard CMOS technology. In our
experiment, fractional amorphization was achieved by applying
a 4.4 V∕2 μs voltage pulse. Volatile modulation with a band-
width of >15 MHz was also achieved in this PM when electric
pulses with voltages lower than 2 V were applied, enabling a
1000 times faster training in theory for nonvolatile ONNs
composed of such PMs than the commonly used TO switches.
After training, PMs are configured to specific states via PIN-
microheater-assisted multilevel switching (i.e., partial phase
transition) of Sb2Se3 to match the target weight values in the
ONNs. According to our simulations, at least 4 bits are needed
for PMs to maintain the accuracy of predictions of ONNs after
the simulated in situ training when tested by the MNIST hand-
written data set. This study on volatile modulation-compatible
PM provides a feasible solution for constructing nonvolatile
ONNs with high-speed and energy-efficient on-chip training
capability.
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